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Abstract
We report a simple one-pot hydrothermal synthesis of carbon dots from frankincense soot. Carbon

dots prepared from frankincense (FI-CDs) have narrow size distribution with an average size of 1.80

nm. FI-CDs emit intense blue fluorescence without additional surface functionalization or modification.

A negative surface charge was observed for FI-CDs, indicating the abundance of epoxy, carboxylic

acid, and hydroxyl functionalities that accounts for their stability. A theoretical investigation of the FI-

CDs attached to oxygen-rich functional groups is incorporated in this study. The characteristics of FI-

CDs signify arm-chair orientation, which is confirmed by comparing the indirect bandgap of FI-CDs

with the bandgap obtained from Tauc plots. Also, we demonstrate that the FI-CDs are promising

fluoroprobes for the ratiometric detection of Pb  ions (detection limit of 0.12 μM). The addition of Pb

to FI-CD solution quenched the fluorescence intensity, which is observable under illumination by UV

light LED chips. We demonstrate a smartphone-assisted quantification of the fluorescence intensity

change providing an efficient strategy for the colorimetric sensing of Pb  in real-life samples.
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Abstract

Surface passivation is a well-established method for modifying carbon dots (CDs), intended to

improve their properties. We present a theoretical study employing density functional theory

(DFT) and time-dependent-DFT (TD-DFT) to explain the photoluminescence (PL) mechanism of

amine-modified carbon dots (CD-NH ) [CDs modified with (3-Aminopropyl) triethoxy silane

(APTES)] considering their local geometry at the terminal ends; the zig-zag (CD -NH ) and

armchair (CD -NH ) structural orientations. The experimental evidence from our previous

report suggests that the amine groups were tethered on the surface of CDs through a Si-O bond

realized by the silane coupling reaction between the ethoxy group of APTES and the hydroxyl

group of the CDs. The effect of pH in tweaking the PL of these systems is scrutinized in the

a b a

a

b
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present study. The influence of pH and structure on the bandgap of CD-NH  is demonstrated by

analyzing the difference in HOMO-LUMO energies, the density of states (DoS) spectra, and

electrostatic potentials (ESP).

Graphical Abstract

Download: Download high-res image (128KB)
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Keywords
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Photoluminescence mechanism; Electrostatic potential; The density of states

1. Introduction

Attempts to develop modification strategies for carbon dots (CDs) have evolved since

discovering these particles [1], [2]. Apart from being zero-dimensional and having sizes upto

10 nm, CDs are chemically inert, water-soluble, biocompatible, resilient to photobleaching, less

toxic, easy to synthesize, and can be modified using simple methods [3], [4], [5], [6], [7], [8], [9]

. Routes to modify CDs can be broadly classified into four major categories [10]; (i) surface

functionalization/passivation [2], [11], [12], (ii) heteroatom doping [13], [14], (iii) composite

material blending [15], [16], and (iv) core-shell architecture [17], [18]. These methods are

intended to reform the CDs for particular applications by altering their photophysical

properties [19], [20]. Surface passivation/functionalization, realized by incorporating

functionalities such as -OH, -NH  on the surface of CDs, is popular due to the hassle-free

methods of synthesis (comparing other routes) [21].

Koga et al. in 2011 introduced an in-situ modification technique suitable for functionalizing

paper substrates [22], and Feng et al. in 2013 reported the synthesis of CDs from paper

precursors [23]. The above results inspired synthesizing CDs from amine-modified paper

precursors (CD-NH ) by introducing a novel surface modification strategy [24]. Amine

modification was realized by immersing paper substrates in an alcoholic solution of (3-

2
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Aminopropyl) triethoxy silane (APTES) [22]. APTES, a versatile coupling agent, acts as a

molecular bridge that attaches organic moieties (with its silanol groups) onto an inorganic

substrate [25]. The binding of APTES on inorganic substrate happens through the silanol

groups, while the –NH  groups are free to involve in further covalent derivatization [26]. With

paper precursors, the ethoxy group of APTES and the –OH group of the cellulose moieties on

paper generate an O-Si bond on CDs (Fig. 1). This tethers –NH  functionality on the surface of

CDs through a silane-coupling reaction [26], [27]. The major disadvantage of CD-NH  was the

low quantum yield (QY), around 2%. Structural orientation (armchair/zig-zag), pH etc., are

major contributing factors to CDs' photoluminescence (PL) [10], [28], [29]. Analyzing the PL

mechanism employing theoretical calculations helps to devise new surface modification

techniques and to redesign the existing modification strategies.

Download: Download high-res image (165KB)

Download: Download full-size image

Fig. 1. Schematic representation of the formation of Si-O bond when CDs are passivated with

APTES via silane coupling reaction ( -O,  -Si,  -C,  -N,  -H).

This work is designed to unravel the PL mechanism using computational methods based on

DFT/TD-DFT. The role of amine functionalities (present in the form of APTES) in tweaking the

PL properties and the effect of pH on these amine-modified CDs are analyzed theoretically. The

previous reports on the effect of –OH moieties in tuning the bandgap of CDs helped the

theoretical design of CDs discussed in the current study [21]. The details on the relative sizes of

the CDs obtained from experimental results helped design the specific CDs that are the first of

their kind [21], [24]. The CDs after APTES treatment (CD-NH ) are compared with those before

modification. The structural orientations of CDs play a pivotal role in tuning the PL

characteristics; CD-NH s are designed to possess zig-zag/armchair (CD -NH /CD -NH )

orientations at their edges. The sizes and structural orientations of CD-NH  are optimized per

the above discussion. Since pH is a decisive factor in tuning the photophysical properties of CD-

NH , the role of pH in tweaking the PL characteristics of CD-NH  is deliberated with the aid of

orbital analysis (HOMO-LUMO), simulations of the density of states (DoS) spectra, UV spectra,

structural analysis from IR spectra, Raman spectra, and XRD analysis. The article includes the

experimental validation of the insights obtained from the DFT/TD-DFT calculations.

2. Computational methodology

2
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The structures of CDs relevant to the study were optimized with Gaussian 09 program package

[30]. CDs carrying Oxygen-containing functional groups have been optimized and compared

with their corresponding graphitic layer previously [21]. The conductor-like polarizable

continuum (CPCM) model was utilized to optimize all the structures with the solvent effects of

water [31]. Gauss View 5.0 [32] and Chemcraft [33] were the visualization tools. The optimized

method and basis set. [34] for simulating CDs were B3LYP [35], [36] and 6–31 G(d) [37]. The

computational tools that helped the investigation of the photophysical properties of the CDs

were orbital (HOMO-LUMO) analysis, molecular electrostatic potential (MEP), the density of

states (DoS) spectra, UV–visible spectra, and natural bond orbital (NBO) [38] analysis. The

density of states (DoS) spectra were obtained from the GaussSum program package [39]. The

APTES-modified systems were subjected to a change of pH, and the effect of acids/bases on the

–OH and –NH  groups, which would alter the charge and multiplicity of the system, were

analyzed. Computational tools such as NBO and nuclear magnetic resonance (NMR) studies

have helped validate the hydrogen bonds (HB) [40]. Calculations of chemical shielding (CS)

tensors were performed on the CDs' optimized structures. The CS calculations were based on

the gauge-independent atomic orbital (GIAO) theory [41], [42]. CS tensors help to understand

the magnetic shielding effect induced due to the valence electrons around the nucleus of an

atom. The principal components of a CS tensor are defined as σ  > σ  > σ . The isotropic CS

tensor (σ ) is defined as .

3. Results and discussion

PL emission of CDs depends on various factors such as size, local geometry at the terminal ends

(armchair/zig-zag structural orientation), surface defects, pH, ionic strength, excitation

wavelength, aggregation etc. [10]. The major disadvantage of APTES-modified CDs synthesized

from paper precursors was their low QY [24]. Here we investigate theoretical aspects of

improving PL intensity with the structural orientation of CDs and variation in pH.

CDs synthesized from paper precursors contain abundant –OH moieties on their surface [23],

[24]. Such an understanding led to the design of armchair/zig-zag oriented CDs (CD /CD )

before modifying with APTES (Fig. 2). The zero-point vibrational energies (E ) of CD  and

CD  are − 70,380.14 eV and − 72,813.79 eV, respectively (Fig. 3). The role of hydrogen bonding

(HB) can't be neglected, as the structural orientation of CD  favours intramolecular HB. The

striking difference of 2433.65 eV between the zero-point vibrational energies of CD  and CD

is due to the intramolecular HB interactions in CD . The spatial orientation of –OH groups of

CD  is favourable for intramolecular HB (O----H-C), which restricts the chances for

intermolecular HB, unlike in the case of CD . R. A. Klein confirms the ability of a force field to

'detect' HB by the summation of van der Waals (VDW) atomic radii [43]. VDW atomic radii are

part of the parametrization to decide if the donor-acceptor (Oxygen-Hydrogen) atoms are close

enough to form HBs. The –OH functionalities of CD  and CD  engage in intermolecular HB in

the solvent, water. The -C-H---O bond distance in the case of CD  is obtained within the range

of 1.80 Å - 1.92 Å, shorter than the sum of VDW radii of Oxygen and Hydrogen atoms by 2.72 Å

[43]. Based on Jeffrey's classification, bond lengths of HBs less than 2.20 Å are regarded as
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strong bonds [44], [45], [46], [47]. Since the geometrical parametrization with VDW

overestimates the separation between donor and acceptor that results in HBs, superior

alternatives such as NBO and NMR studies must be sorted to investigate HBs.

Download: Download high-res image (180KB)

Download: Download full-size image

Fig. 2. Optimized structures of (a) CD  and (b) CD . Display of HB interaction in CD  (  -O, 

-C,  -H).
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Download: Download full-size image

Fig. 3. Comparison of the structure and emission characteristics of armchair and zig-zag

oriented CDs before surface modification with APTES. The bandgap obtained from both DoS

spectra and HOMO-LUMO energy levels are provided.
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NBO analysis considers localized bonds and lone pairs as the basic unit of a molecular

structure, comparable to the Lewis theory of covalent bonding and the Pauling-Slater-Coulson

[48], [49], [50] theory of bond hybridization and polarization [51], [52]. The intramolecular HB

interactions in CD  (O----H-C) can be attributed to the delocalization of electrons from the

lone pair of the donor atom Oxygen (n ) to the unoccupied anti-bonding orbital of C-H (σ * )

[40]. Such attractive interactions between the n  and σ *  give rise to the second-order

perturbation energies, E(2), that can characterize the strength of HB [52]. In the case of CD ,

E(2) correlates well with the O----H lengths of HBs (Table S1, Supplementary material). The

electron delocalization is more as the HB gets closer. NMR analysis in association with

geometry parametrization and NBO helps to explain hydrogen bonding in CD . After enlisting

the CS tensors of C and O (Table S1 and S2, Supplementary material), a blatant correlation

of σ  to the length of HBs has been revealed. The short bond lengths indicate that the HBs are

strong, and the electrons concentrated around Oxygen atoms undergo the maximum effect of

shielding. As the HB weakens, the deshielding of electrons causes downfield shifts.

The molecular electrostatic potential (MEP) diagrams help to identify the electrophilic sites in a

molecular entity. The red colour in the MEP diagrams of Fig. 2 refers to the regions of minimum

electrostatic potential (i.e., the abundance of electrons), suggesting that the –OH groups can

facilitate further modification of CD  and CD  by forming covalent bonds [21]. The blue

colour indicates the regions of maximum electrostatic potential and acts the opposite. The

energy gap (ΔE) obtained from the orbital analysis explains that zig-zag orientation lowers the

bandgap more than armchair. In the HOMO-LUMO diagrams of CD , the orbitals concentrate

largely towards the basal plane. CD 's uniform distribution of orbitals towards the edges has a

lower energy gap than CD . The non-bonding edge states created at the edges of CD  explain

the reason for the orbital distribution at their edges [53]. Such non-bonding edge states

dominate the origin of electronic, magnetic and chemical activities of CD . These non-bonding

edge states are absent in CD . The bandgap from the DoS spectra of CD  and CD  follows a

similar trend. A comparison of the features mentioned above of CD  and CD  with their

corresponding graphitic layers is carried out in the previous reports of our group [21].

Introducing APTES through a novel synthetic method described in the previous reports yielded

CD -NH  and CD -NH  indicating the amine modification on armchair and zig-zag oriented

CDs, respectively [24]. Modification attained via APTES treatment helped stabilize CD -NH

and CD -NH  by lowering E  (Fig. 4). The length of the O-Si bond (formed due to silane

coupling reaction and confirmed by NBO analysis) of CD -NH  and CD -NH  is 1.67 Å and

1.68 Å, respectively agrees with the experimentally observed value of 1.68 Å [54]. The C-N bond

length within the APTES moiety observed in CD -NH  and CD -NH  (confirmed via NBO

analysis) is 1.47 Å and 1.48 Å, respectively, which correlates with the experimental value of 1.47 

Å [55].
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Fig. 4. Optimized structures and E  of (a) CD -NH  and (b) CD -NH . The colours of atoms

present in the structure are O- , N- , Si- , C- , and H- . The CD -NH  is stable due to its

lowest E .

CD -NH  and CD -NH  were subjected to a change of pH, and the effect of acids/bases on the

-OH and -NH  groups, which would alter the charge and multiplicity of the system, was

analyzed. Fig. 5 gives an account of the behaviour of CD -NH  in the presence of acids and

bases. When pH< 7, -OH groups on CD -NH  are unaffected, and the -NH  groups are

protonated, forming quaternary ammonium complexes. The C-N bond length is determined to

be 1.52 Å, indicating the formation of the quaternary ammonium complex. Comparing the E

when pH > 7 and pH = 7, CD -NH  is energetically stable when pH < 7 as it lacks

intramolecular HB. The chances of intramolecular HB are restricted due to the constraints of

geometry parameters, such as the distance of HB and the alignment of –OH bonds to different

planes. In neutral conditions, APTES modification resulted in minimizing the HB interactions

limiting to just one after validating with geometry parameters and tools like NBO (Table S3,

Supplementary material). When pH > 7, the –OH groups are oxidized to ketones. There are high

chances of intramolecular HB in CD -NH  when pH > 7 with the O-H bond distances ranging

from 1.91–1.93 Å. The electron delocalization indicated by E(2) improves when the HB

strengthens (Table S3, Supplementary material). The CS tensors of C and O throw light to

correlate the HB strength to the shielding of electrons (Table S4, Supplementary material) as in

the case of CD .
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Fig. 5. Optimized structures and E  of CD -NH  when (a) pH < 7, (b) pH = 7 and (c) pH > 7

conditions (O- , N- , Si- ,C- , H- ). CD -NH  is stable when pH < 7.

The MEP diagrams suggest that the free -NH  group is available for further covalent

modification in the case of CD -NH  when pH = 7 and pH > 7 (Fig. 6). The stability of CD -NH

is ascertained by the ΔE values obtained from the HOMO-LUMO gap. The uneven distribution

of orbitals of these systems results in the lowering of ΔE. The ΔE estimated from CD -NH

when pH < 7 and pH = 7 were comparable with values ranging between 0.066–0.067 eV, and ΔE

minimized to 0.051 eV when pH > 7, suggesting the system's instability. When ΔE decreases,

chances for the excitation of electrons are rampant, which results in red-shifting emissions. A

similar trend is observed with the ΔE calculated from the DoS spectra of CD -NH  with

variation in pH.
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Fig. 6. Comparison of the emission characteristics of CD -NH  in (a) pH < 7, (b) pH = 7 and (c)

pH > 7 conditions. ΔE is lesser when CD -NH  is optimised with pH > 7.

The combined effects of APTES modification and structural orientation stabilize CD -NH

greatly (Fig. 3), comparing their E  with CD , CD , and CD -NH . The O-Si bond length

estimated when pH < 7, pH = 7, and pH > 7 in CD -NH  are 1.68 Å, 1.68 Å and 1.65 Å,

respectively, and their corresponding C-N bond length is 1.57 Å, 1.47 Å, and 1.47 Å respectively.

Under pH < 7, CD -NH  is a quaternary ammonium complex, and its E  is much higher than

the other systems(Fig. 7). The zig-zag orientation is more favourable for intermolecular HB

than intramolecular. The HOMO-LUMO energy levels and the orbital diagrams in both pH < 7

and pH = 7 look similar as hardly any structural differences exist except for the change of

environment around the –NH  group. Their energy levels and ΔE are thus comparable. In the

pH > 7, all –OH groups are oxidized to ketones, which resulted in the alteration of the

arrangement of orbitals. Hence the ΔE is reduced considerably to 0.028 eV, and red-shifted

emissions are favoured (Fig. 8). The ΔE obtained from DoS spectra displays similar

characteristics.
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Fig. 7. Optimized structures and E  of CD -NH  in (a) pH < 7, (b) pH = 7 and (c) pH > 7

conditions (O- , N- , Si- , C- , H- ). CD -NH  is stable when pH < 7.
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Fig. 8. Comparison of the emission characteristics of CD -NH  in (a) pH < 7, (b) pH = 7 and (c)

pH > 7 conditions. ΔE is lesser when CD -NH  is optimised with pH > 7.

The wavelength of maximum emission calculated from the bandgap obtained from both DoS

spectra and HOMO-LUMO energy levels of the CDs discussed in this manuscript have been
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tabulated in Table 1. The wavelength of emission obtained from DoS spectra (λ ) for CDs

with armchair orientation is closer to the experimentally observed value [24].

Table 1. Comparison of λ calculated from the ΔE obtained from DoS spectra and HOMO-LUMO

energy levels.

-70,380.14 2.94 0.068 421.77 18,235.29

-91784.09 2.65 0.066 467.92 18,787.88

-91773.03 2.86 0.067 433.57 18,507.46

-91723.94 1.26 0.051 984.13 24,313.73

-72,813.79 1.40 0.031 885.71 40,000

-93310.80 1.42 0.031 873.24 40,000

-93816.57 1.41 0.031 879.43 40,000

-93767.16 1.17 0.028 1059.83 44,285.71

4. Conclusions

CDs' surface functionalization is a popular modification strategy to improve their photophysical

properties. Here we attempted the theoretical interpretation (with DFT calculations) of the

APTES-modification strategy adopted on CDs obtained from paper precursors, reported

previously by our group. The results obtained from the APTES-modified systems (CD -NH

and CD -NH ) are compared with unmodified systems (CD  and CD ). CD -NH  are more

stabilized than CD -NH , based on comparing their E . The oxidation of -OH groups of CD-

NH  when pH > 7 contributes to extending the conjugation of the graphitic core of CDs

resulting in the enhancement of PL. The accumulation of negative charges on the surface of CD-

NH  when pH > 7 implies the possibility of further modification of the CD surface. The ΔE

values obtained from both DoS spectra and HOMO-LUMO analysis follow similar trends and

explain the effect of pH in tuning the PL mechanism. Thus, the effect of local geometry at the

terminal ends of CDs (armchair and zig-zag) and pH cannot be ignored while explaining the PL

mechanism. The effect of CD sizes and the possibilities of crosslinking of APTES moieties

between CD systems must be analysed further to explain the PL mechanism efficiently.
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We attempt to explain the photoluminescence (PL) mechanism of APTES-modified carbon dots (CDs) utilizing

DFT calculations, which is the first of its kind. Hydrogen bonding interactions are analyzed to explain the

structural stability of the APTES-modified CDs. The pH and local geometry around the edges (armchair and

zig-zag orientations) play a pivotal role in modulating the PL of APTES-modified CDs, thereby improving their

quantum yield (QY). Such improved QYs of APTES-modified CDs enable their optoelectronic utilities.
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