Reg. No. : \qquad
Name : \qquad

Second Semester M.Sc. Degree (CBSS - Supple. (One Time Mercy

 Chance)/Imp.) Examination, April 2024(2014 to 2022 Admissions) CHEMISTRY
CHE. 2C. 05 : Theoretical Chemistry - II
Time : 3 Hours
Max. Marks : 60

SECTION - A

Answer all questions in one word or one sentence. Each question carries one mark.

1. Prove that the numbers from $-\alpha$ to $+\alpha$ form a mathematical group under addition operation.
2. By using the 3×3 matrix prove that C_{3} rotation axis is not its own inverse.
3. Find out the point group of a) Ethane (staggered) b) $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$.
4. How Raman spectroscopy is different from other spectroscopic techniques?
5. What are the two different types of selection rules in spectroscopy ?
6. Sketch the energy level diagram of nucleus with $\operatorname{spin} 1=1$ in a magnetic field.
7. What are the different factors that contribute to the width of spectral lines?
8. State Frank-Condon principle. \qquad $(8 \times 1=8)$
SECTION - B
Answer any eight questions. Answer may be in two or three sentences. Each question carries two marks.
9. What are conjugate elements? Give an example.
10. All cyclic groups are abelian, but the reverse is not true. Rationalise this statement.
P.T.O.
11. The three reflection planes of ammonia are included in the same class. Why ?
12. Explain the reason for applying the RF radiation perpendicular to the magnetic field in NMR spectroscopy.
13. In a given organic compound two kinds of protons exhibit signals at 100 Hz , 400 Hz using a 60 MHz instrument. What will be their relative position using 90 MHz instrument? Also convert the position of signals into delta scale.
14. Differentiate between point group and space group.
15. Explain the relevance of population of energy levels and intensity of spectral lines.
16. Sketch the NMR spectrum of AMX pattern.
17. Classify the molecules based on the moment of inertia along three mutually perpendicular directions.
18. Comment on the differences between the scales in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy
19. What are combination bands in IR spectrum ?
20. Define normal modes of vibrations.

Answer any four questions. Each question carries three marks.
21. Explain the determination force constant of linear diatomic molecules.
22. Stoke lines are more intense than Anti stoke lines in Raman spectroscopy. Why?
23. Explain the different factors contributing to the chemical shift of protons in NMR spectroscopy.
24. What are the different types of relaxation methods in NMR ?
25. What are the different conditions for selecting the principle rotation axis for molecules?
26. Using $\mathrm{C}_{3 \mathrm{v}}$ character table find out $\mathrm{E} \otimes \mathrm{E}$ and reduce it.

$C_{3 v}$	E	$2 C_{3}$	$3 \sigma_{v}$		
A_{1}	1	1	1	z	$x^{2}+y^{2}, z^{2}$
A_{2}	1	1	-1	R_{z}	
E	2	-1	0	$(x, y),\left(R_{x}, R_{y}\right)$	$\left(x^{2}-y^{2}, x y\right),(x z, y z)$

27. Explain the different rules for forming a mathematical group.
28. Generate a 3×3 matrix for C_{2} and S_{2} rotation axis. What is the equivalent symmetry operation of S_{2}.

SECTION - D

Essay type questions. Answer any four questions. Each question carries six marks.
29. A) Find out the IR and Raman active vibrational modes of NH_{3} using group theory.

OR
B) Using group theory find out the hybrid orbitals of CH_{4}
30. A) Explain the FT NMR spectroscopy. What are the advantages of this technique over CW NMR.

OR
B) Explain the calculation of heat of dissociation of molecules using electronic spectroscopy.
31. A) How microwave spectroscopy can be used in determining the bond length of linear diatomic molecules.
OR
B) What is rule of mutual exclusion principle ? Sketch the polarizability ellipsoid of various vibrational modes of CO_{2}. Which of these are Raman active ?
32. A) State and explain Great Orthogonality Theorem. Using this derive the $\mathrm{C}_{2 \mathrm{~h}}$ character table.
OR
B) Generate a 3×3 matrix for C_{n} and $C_{n}{ }^{-1}$ rotation axis using x, y, z co-ordinates of point in three dimensional space.

Character table for point group T_{d}

T_{d}	E	$8 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}$	$6 \mathrm{~S}_{4}$	$6 \sigma_{\mathrm{d}}$	Linear functions, rotations	Quadratic functions
A_{1}	+1	+1	+1	+1	+1	-	$x^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$
$\mathrm{~A}_{2}$	+1	+1	+1	-1	-1	-	-
E	+2	-1	+2	0	0	-	$\left(2 z^{2}-\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{x}^{2}-\mathrm{y}^{2}\right)$
T_{1}	+3	0	-1	+1	-1	$\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}, \mathrm{R}_{\mathrm{z}}\right)$	-
T_{2}	+3	0	-1	-1	+1	$(\mathrm{x}, \mathrm{y}, \mathrm{z})$	$(\mathrm{xy}, \mathrm{xz}, \mathrm{yz})$

