

K24P 0836

Reg. No. :

Name :

Second Semester M.Sc. Degree (CBSS – Supple. (One Time Mercy Chance)/Imp.) Examination, April 2024 (2014 to 2022 Admissions) CHEMISTRY CHE. 2C.05 : Theoretical Chemistry – II

Time : 3 Hours

Max. Marks : 60

SECTION - A

Answer all questions in one word or one sentence. Each question carries one mark.

- 1. Prove that the numbers from α to + α form a mathematical group under addition operation.
- 2. By using the 3×3 matrix prove that C_3 rotation axis is not its own inverse.
- 3. Find out the point group of a) Ethane (staggered) b) $CH_2 = C = C = C = CH_2$.
- 4. How Raman spectroscopy is different from other spectroscopic techniques ?
- 5. What are the two different types of selection rules in spectroscopy ?
- 6. Sketch the energy level diagram of nucleus with spin I = 1 in a magnetic field.
- 7. What are the different factors that contribute to the width of spectral lines ?
- 8. State Frank-Condon principle. SYED COLLEGE

(8×1=8)

SECTION - B

Answer **any eight** questions. Answer may be in **two** or **three** sentences. **Each** question carries **two** marks.

- 9. What are conjugate elements ? Give an example.
- 10. All cyclic groups are abelian, but the reverse is not true. Rationalise this statement.

K24P 0836

- 11. The three reflection planes of ammonia are included in the same class. Why ?
- 12. Explain the reason for applying the RF radiation perpendicular to the magnetic field in NMR spectroscopy.
- 13. In a given organic compound two kinds of protons exhibit signals at 100 Hz, 400 Hz using a 60 MHz instrument. What will be their relative position using 90 MHz instrument ? Also convert the position of signals into delta scale.
- 14. Differentiate between point group and space group.
- 15. Explain the relevance of population of energy levels and intensity of spectral lines.
- 16. Sketch the NMR spectrum of AMX pattern.
- 17. Classify the molecules based on the moment of inertia along three mutually perpendicular directions.
- Comment on the differences between the scales in ¹H and ¹³C NMR spectroscopy.
- 19. What are combination bands in IR spectrum ?
- 20. Define normal modes of vibrations.

(8×2=16)

SECTION - C

Answer any four questions. Each question carries three marks.

- 21. Explain the determination force constant of linear diatomic molecules.
- 22. Stoke lines are more intense than Anti stoke lines in Raman spectroscopy. Why?
- 23. Explain the different factors contributing to the chemical shift of protons in NMR spectroscopy.
- 24. What are the different types of relaxation methods in NMR ?

- 25. What are the different conditions for selecting the principle rotation axis for molecules ?
- 26. Using C_{3v} character table find out E \otimes E and reduce it.

C _{3v}	E	2C ₃	Зσ _v		
A ₁	1	1	1	Z	$x^2 + y^2, z^2$
A_2	1	1	- 1	R _z	
Е	2	- 1	0	(x, y), (R _x , R _y)	(x ² – y ² , xy), (xz, yz)
				200 0000	73-

- 27. Explain the different rules for forming a mathematical group.
- 28. Generate a 3×3 matrix for C₂ and S₂ rotation axis. What is the equivalent symmetry operation of S₂. (4×3=12)

Essay type questions. Answer any four questions. Each question carries six marks.

29. A) Find out the IR and Raman active vibrational modes of NH₃ using group theory.

B) Using group theory find out the hybrid orbitals of CH_4 .

30. A) Explain the FT NMR spectroscopy. What are the advantages of this technique over CW NMR.

OR

OR

- B) Explain the calculation of heat of dissociation of molecules using electronic spectroscopy.
- 31. A) How microwave spectroscopy can be used in determining the bond length of linear diatomic molecules.

OR

B) What is rule of mutual exclusion principle ? Sketch the polarizability ellipsoid of various vibrational modes of CO₂. Which of these are Raman active ?

K24P 0836

- -4-
- 32. A) State and explain Great Orthogonality Theorem. Using this derive the $\rm C_{2h}$ character table.

OR

B) Generate a 3×3 matrix for C_n and C_n^{-1} rotation axis using x, y, z co-ordinates of point in three dimensional space.

Τ _d	E	8C ₃	3C ₂	6S ₄	6σ _d	Linear functions,	Quadratic functions
						1012110113	
А ₁	+ 1	+ 1	+ 1	+ 1	10+ck	0072	$x^2 + y^2 + z^2$
A ₂	+ 1	+ 1	+1		-1		-
Е	+ 2	- 1	+ 2	0	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$
T ₁	+ 3	0	- 1	+1	-1	(R_{x},R_{y},R_{z})	-
T ₂	+ 3	0	-1	-1	+ 1	(x, y, z)	(xy, xz, yz)

Character table for point group T_d

