

Reg. No.	:	
Name :		

I Semester M.Sc. Degree (C.B.C.S.S. – OBE – Reg./Supple./Imp.) Examination, October 2024 (2023 Admission Onwards) CHEMISTRY/CHEMISTRY WITH DRUG CHEMISTRY SPECIALIZATION MSCHD01C01/MSCHE01C01 : Theoretical Chemistry – 1

Time: 3 Hours Max. Marks: 60

SECTION - A

(Answer any five questions. Short answer questions. Each question carries three marks.)

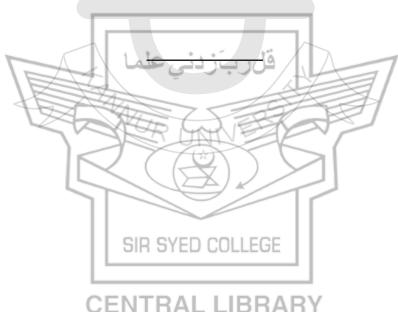
- 1. What is meant by Compton effect? Calculate the Compton shift when scattering angle is equal to 90°.
- 2. Explain eigen values and eigen functions with suitable examples.
- 3. Explain (i) spherical harmonics and (ii) polar diagrams.
- 4. Explain the concept of degeneracy with respect to particle in a cubical box problem. What will be the degeneracy of the energy level (14h²/8ma²) of a cubical box with edge length 'a'?
- 5. State and explain variation theorem.
- 6. Derive the ground state spectroscopic term symbol for O_2 molecule. (5×3=15)

SECTION - B

(Answer **any three** questions. Short answer questions. **Each** question carries **six** marks.)

- 7. Explain the Davisson-Germer experiment as a proof of wave-particle duality of matter.
- 8. What angular momentum operators? Discuss their commuting property.

K24P 3879



- 9. Briefly discuss the Self Consistent Field theory.
- 10. Differentiate the basis sets STO and GTO.
- 11. Sketch the MO diagrams of heteronuclear diatomic molecules, NO and HF.
 Calculate their bond orders. (3×6=18)

SECTION - C

(Answer **any three** questions. Essay type questions. **Each** question carries **nine** marks.)

- 12. Discuss the postulates of quantum mechanics.
- 13. Give the Schrodinger wave equation for hydrogen like systems. Separate the variables and obtain the complete solution of θ (theta) equation.
- 14. Discuss the quantum mechanical treatment of non-planar rigid rotator.
- 15. Explain the perturbation method. Apply first-order time-independent perturbation method to particle in 1-D box with slanted bottom.
- 16. Apply the Huckel Molecular Orbital (HMO) theory to benzene. (3×9=27)

