

K24P 1065

Reg. No. :

Name :

Second Semester M.Sc. Degree (C.B.C.S.S. – OBE – Regular) Examination, April 2024 (2023 Admission) CHEMISTRY MSCHE02C08/MSCHD02C08 : Theoretical Chemistry – II

Time : 3 Hours

Max. Marks : 60

Short answer questions. Answer **any five** questions. **Each** question carries **(5×3=15)**

- 1. Construct the group multiplication table of C_{3v} and discuss the generalization made from this table.
- 2. Write a note on transition moment integral and its application in group theory.
- 3. Discuss the isotope effect on rotational spectra.
- 4. Explain Franck Condon principle and its relevance.
- 5. Assign each molecule below to proper point group
 - a) Trans-1, 3-dibromocyclobutane
 - b) Bromoethane
 - c) Phosphorous oxychloride
- The rotational constant for H³⁵ CI is observed to be 10.5909 cm⁻¹. What are the values of B for H³⁷ CI and for ²D³⁵ CI ?

NTRACTION - B

Paragraph questions. Answer **any three** questions. **Each** question carries **six** marks. (3×6=18)

7. Construct matrices for each of the elements in C_2h and verify the group theoretical rules using these matrices.

(3×9=27)

- 8. Discuss the great orthogonality theorem and explain the rules derived from the theorem.
- 9. Find out the atomic orbitals of Carbon taking part in the hybridisation of CH_4 molecule.
- 10. Using the energy level expression and appropriate selection rules draw an energy level diagram and the spectral transitions for the rotational Raman spectrum of a rigid diatomic rotor. Also show the appearance of the spectrum.
- 11. Discuss spin spin coupling and coupling constant and describe the high resolution proton NMR spectrum of 1, 1, 2-trichloroethane.

SECTION - C

Essay type questions. Answer **any three** questions. **Each** question carries **9** marks.

- 12. a) Construct the general matrix for C_n and S_n . (3 Marks)
 - b) Decompose the reducible representation (Γ) 6 0 0 in the point group C_{3v} into a sum of irreducible representations. Write the product E × E in this group as a sum of irreducible representation. (6 Marks)
- 13. Determine the IR and Raman active vibrations of BF_3 and CH_4 molecules.
- 14. Describe the vibrational-rotational spectrum of a diatomic molecule.
- 15. Explain the following in electronic transitions
 - a) Dissociation
 - b) Pre-dissociation
 - c) Birge-Sponer plot.(3 Marks each)
- 16. Discuss the factors influencing the chemical shift and coupling constant in NMR spectroscopy.

ENTRAL LIBRARY

C _{3v} (3m)	E	2C ₃	3σ _v	
A ₁	1	1	1	z $x^2 + y^2, z^2$
A_2	1	1	-1	R _z
Е	2	-1	0	$(x, y) (R_x, R_y) (x^2 - y^2, 2xy) (xz, yz)$
T _d	Е	8C ₃ 30	C ₂ 6S	6 ₄ 6σ _d
$(\overline{4}3m)$			200	D CERJOMIA
A ₁	1	1		1 $x^2 + y^2 + z^2$
A_2	1	1 1	_1	-1
Е	2	-1 2	2 0	0 $(2z^2 - x^2 - y^2), \sqrt{3}(x^2 - y^2)$
T ₁	3	0 -1	1	-1 (R _x , R _y , R _z)
T ₂	3	0 –	ا جاما	1 (x, y, z) (xy, xz, yz)
	E		**	
D _{3h}	/€	2C ₃ 3C ₂	σ_{h}	$2S_3 3\sigma_v$
$(\bar{6})$ m2	2	S		W FRY
A' ₁	1		1	1 1 $x^2 + y^2$, z^2
A_2'	1	1 -1	TAN	1 -1 R _z
E′	2	-1 0	2	-1 0 (x, y) (x ² - y ² , 2xy)
A″ ₁	1	1 1	SIR-SYI	EDICOLLEGE
A″ ₂	1	1 _1	-1	-1 1 z
Ε″	2	-1 0	-2	1 0 (R _x , R _y) (xy, yz)
		UEI	NI MA	