

K21P 1010

	Ш	Ш	Ш	Ш	

Reg. No.:....

Name :

III Semester M.Sc. Degree (CBSS – Reg./Suppl./Imp.)
Examination, October 2021
(2018 Admission Onwards)
PHYSICS

PHY 3C12: Nuclear and Particle Physics

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer both questions (either a or b):

1. a) Derive an expression for the differential scattering cross section of electrons by a finite size nucleus. How this method enables us to determine the scattering length?

OR

- b) Explain the Shell model of nucleus. Write a note on magnetic dipole moment on the basis of shell model.
- 2. a) Explain the Bohr and Wheeler theory of nuclear fission. Deduce the expression for the critical energy for fission and show that the nucleus would be stable against spontaneous fission if $\frac{z^2}{A}$ is smaller than 50.

OR

b) What is parity in particle physics? Where it is violated? Give its experimental details.

 $(2\times12=24)$

SECTION - B

Answer any four. (1 mark for part (a), 3 marks for part (b), 5 marks for part (c))

- 3. a) What are the basic similarities between a liquid drop and an atomic nucleus?
 - b) Write down the Semi empirical mass formula and explain each term.

K21P 1010

- c) Using the semi empirical mass formula, show that the atomic number of most stable isobar for a nucleus having odd A is $Z = \frac{A}{2 + 0.015A^{2/3}}$. (Given $a_3 = 0.58$ MeV, $a_4 = 19.3$ MeV.)
- 4. a) What are the salient characteristics of the nuclear forces?
 - b) Briefly outline Yukawa's theory of nuclear forces.
 - c) Show that for a square well of depth V_0 and range b, the scattering length a for a spinless neutron is given by the relation K cot Kb = $(b a)^{-1}$, where $K = (M V_0)^{1/2}/\hbar$.
- 5. a) Define the internal conversion Phenomenon.
 - b) Explain the significance of internal conversion coefficient.
 - c) Determine the product nuclei and Q values in the following reactions : $_{13}\text{A}l^{27}$ (d, α) and $_{12}\text{Mg}^{25}$ (α , d). Masses of $_{13}\text{A}l^{27}$, $_{12}\text{Mg}^{25}$, d, and α are 26.9901, 24.9936, 2.0147 and 4.0039 amu respectively.
- 6. a) Define Q value for beta decay.
 - b) Find the energy released during beta decay.
 - c) Explain the Fermi Theory of beta decay.
- 7. a) What are the four basic forces?
 - b) Write the important conservation laws obeyed in particle interactions.
 - c) Which of the following reactions are possible?

i)
$$\pi^+ + n^\circ \rightarrow \Lambda^\circ + K^+$$

ii)
$$\pi^+ + n^\circ \rightarrow K^\circ + K^+$$

iii)
$$\pi^+ + n^\circ \rightarrow \pi^+ + P$$

- 8. a) What are Quarks?
 - b) Outline the basic properties of quarks.
 - c) Find the quark content of the following particles

n, p,
$$\pi^{-}$$
, π^{0} , π^{+} .

 $(4 \times 9 = 36)$