

Reg. No.:

Name:

I Semester M.Sc. Degree (CBCSS – OBE – Reg./Supple./Imp.) Examination, October 2024 (2023 Admission Onwards) PHYSICS/PHYSICS WITH COMPUTATIONAL AND NANO SCIENCE SPECIALIZATION MSPHN01C02/MSPHY01C02: Mathematical Physics – 1

Time: 3 Hours Max. Marks: 60

SECTION - A

Answer any 5. Each one carries 3 marks.

- 1. Define symmetric, skew-symmetric and orthogonal matrices.
- 2. Differentiate between covariant and contravariant tensors.
- 3. Find $\left[\left(\frac{1}{2} \right) \right]$.
- 4. List the Dirichlet's conditions for a Fourier series.
- 5. Show that $P_n(-1) = (-1)^n P_n(1)$.
- 6. List the three classes of second order partial differential equations. (5×3=15)

SECTION - B

Answer **any 3**. **Each one** carries **6** marks.

7. Find the eigen values of the matrix
$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

8. Derive the relation between beta and gamma functions.

K24P 3917

- 9. Starting from the definition of $J_n(x)$, prove that $J_{n+1}(x) + J_{n-1}(x) = \frac{2nJ_n(x)}{x}$.
- 10. Obtain a Fourier expression for $f(x) = x^3$ for $-\pi < x < \pi$.

11. Prove that
$$\int_{-\infty}^{\infty} e^{-x^2} H_m(x) H_n(x) dx = 0$$
, for $m \neq n$. (3×6=18)

SECTION - C

Answer any 3. Each one carries 9 marks.

- 12. Find the eigen values and corresponding eigen vectors of the matrix $\begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$
- 13. Find the solution to the 1D heat equation using the method of separation of variables.
- 14. Prove the orthogonality of the Legendre polynomials.
- 15. Define Fourier transform of a function. Find the Fourier transform of

$$f(x) = \begin{cases} \frac{1}{2a}, & \text{if } |x| \le a \\ 0, & \text{if } |x| > 0 \end{cases}.$$

16. State and prove Leibniz's rule for the convergence of an alternating series.

 $(3\times 9=27)$

CENTRAL LIBRARY