

Reg. No.	:	
Name :		

I Semester M.Sc. Degree (CBCSS – OBE – Regular) Examination, October 2023 (2023 Admission) CHEMISTRY

MSCHE01C02: Inorganic Chemistry – I

Time: 3 Hours Max. Marks: 60

SECTION - A

Answer **any 5** questions from the following. **Each** question carries **three** marks.

- 1. Discuss about the characteristic features of Cupferron, the organic precipitant.
- 2. Explain the principle behind flow injection analysis.
- 3. Write a short note on proton affinity.
- 4. Define radioactive equilibrium.
- 5. Write briefly on Isopoly acids of molybdenum.
- 6. How many skeletal electrons are present in B₅H_o?

 $(5 \times 3 = 15)$

SECTION - B

Answer any 3 questions from the following. Each question carries six marks.

- 7. Discuss about the theory of EDTA titrations and give the general properties of the metal ion indicators used in EDTA titrations.
- 8. Discuss about different theories for the explanation of the stability of complexes formed by hard-hard and soft-soft interactions.
- 9. Explain different types of super acids with examples and discuss about their applications.

K23P 3073

- 10. Give the principle behind the working of Scintillation counters.
- 11. Write short note on polythiazyl and its applications.

 $(3 \times 6 = 18)$

SECTION - C

Answer **any 3** questions from the following. **Each** question carries **nine** marks.

- 12. Explain the theory, experimental setup and applications of Electro gravimetric analysis.
- 13. a) Explain the properties of non-aqueous solvents.
 - i) HF
 - ii) N_2O_4
 - b) Write a short note on the chemistry of molten salts as nonaqueous solvent systems.
- 14. Describe the basic principles behind the working of the following nuclear reactors:
 - a) BWR
 - b) PHWR.
- 15. Write notes on:
 - a) Radiolysis of water
 - b) Nuclear activation analysis
 - c) Application of radiation chemistry in Medicine.
- 16. Discuss in detail about the structure, bonding and topology in boron hydrides. (3×9=27)

CENTRAL LIBRARY