

Reg. No. :
Name :

I Semester M.Sc. Degree (CBSS-Reg./Sup./Imp.) Examination, October 2022 (2019 Admission Onwards) PHYSICS

PHY1C01: Mathematical Physics - I

Time: 3 Hours Max. Marks: 60

SECTION - A

Answer both questions. (either a or b), each question carries 12 marks. (2×12=24)

1. a) Express the unit vectors in spherical polar coordinate system in terms of the unit vectors in Cartesian coordinates.

OR

- b) Diagonalize the matrix $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 2 \end{pmatrix}$.
- 2. a) Discuss the Laurent series. Find the Laurent series of the function $f(z) = \frac{1}{1-z^2}$ with centre at z = 1.
 - b) Deduce the relation $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ and hence show that

$$\Gamma(m)\Gamma(1-m) = \frac{\pi}{sinm\pi} \text{ . Given that } \int\limits_0^\infty \frac{y^{m-1}}{(1+y)} dy = \frac{\pi}{sinm\pi} \text{ .}$$

SECTION - B

Answer **any four** questions, Part **a** carries **1** mark, Part **b** carries **3** marks and Part **c** carries **5** marks. (4×9=36)

- 3. a) If R is an orthogonal matrix, show that $detR = \pm 1$.
 - b) Show that the product of two orthogonal matrices is orthogonal.
 - c) Find the most general 2×2 orthogonal matrix.

- 4. a) Show that $\nabla \times \vec{r} = 0$.
 - b) Resolve the cylindrical unit vectors into their Cartesian components.
 - c) Obtain the Laplacian operator in cylindrical coordinates.
- 5. a) Comment on the eigenvalues of an anti Hermitian matrix.
 - b) Show that the eigenvectors of a unitary matrix is unimodular.
 - c) Consider the matrices $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$. Verify whether

they can be simultaneously diagonalized, and find the common eigenvectors of the two matrices.

- 6. a) Evaluate $\delta_{ik}\delta_{kl}$.
 - b) Evaluate all the components of Levi civita tensor \in_{ijk} in three dimensions, if $\in_{123} = 1$.
 - c) Show that for Levi civita tensor, $\in_{ijk} \in_{pqk} = \delta_{ip}\delta_{jq} \delta_{iq}\delta_{jp}$.
- 7. a) Write down the generating function for the Legendre polynomials.
 - b) Obtain $P_1(x)$ and $P_2(x)$ from the generating function.
 - c) Show that $P'_{n+1}(x) P'_{n-1}(x) = (2n + 1)P_n(x)$.
- 8. a) Develop the Taylor expansion for $\ln (1 + z)$.
 - b) Find the analytic function w(z) = u(x, y) + iv(x, y) if $u(x, y) = x^3 3xy^2$.
 - c) Find the residue of $f(z) = \frac{e^z}{z^2 + a^2}$ at its singularities.

SIR SYED COLLEGE

CENTRAL LIBRARY