

Reg.	No.	:	 •••••	 	••••	••••	
Nam	ρ.						

IV Semester M.Sc. Degree (CBSS – Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) CHEMISTRY

CHE4C.12: Inter Disciplinary Topics and Instrumentation Techniques

Time: 3 Hours Max. Marks: 60

SECTION - A

(Answer **all** questions in **one** word or **one** sentence. **Each** question carries **1** mark.)

- 1. Give any two examples for molecules having intra-molecular hydrogen bonding.
- 2. Calculate the atom economy for the following reaction.

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$

- 3. What is the role of hydrophobicity in self-assembly?
- 4. How percentage yield of a reaction differs from atom economy?
- 5. Give any two examples for piezoelectric materials.
- 6. What is lithography?
- 7. How the extent of scattering from a particle vary with the wavelength of light?
- 8. How many ESR lines are expected for methyl radical?

SECTION - B

(Answer any eight questions. Each question carries 2 marks.)

9. How you manage solvents in a *green* synthesis?

- 10. What are biomimetic nanomaterials?
- 11. What is the role of solvents in the self-assembly of organic molecules?
- 12. Is it possible to perform aldol condensation reaction in a greener way ? Explain.
- 13. What is meant by amphiphile? How it helps in self-assembly?
- 14. What is Doppler shift in Mossbauer spectroscopy?
- 15. What do you understand about a co-receptor molecule?
- 16. Explain any two applications of turbidimetry.
- 17. Explain any one microwave assisted organic synthesis.
- 18. Explain the significance of self-assembly in nanotechnology.
- 19. What are the applications of nanomaterials in optics?
- 20. What is zero field splitting in ESR spectroscopy?

SECTION - C

(Answer any four questions. Each question carries 3 marks.)

- 21. How AFM is used to characterize self-assembled nanostructures?
- 22. Write a short note on molecular recognition.
- 23. What are the advantages of phase transfer catalysts in green chemistry? Explain with examples.
- 24. How electron microscopy can be used to characterize nanomaterials? Explain with an example.
- 25. Compare the classical Cannizaro reaction with green chemistry method.
- 26. In bottom up synthesis, how nucleation and crystal growth processes decide the formation of nanomaterials?
- 27. Explain the working of differential scanning calorimetry.
- 28. Explain the working of direct injection enthalpimetry.

SECTION - D

(Answer four questions. Each question carries 6 marks.)

29. Explain the applications of ESR spectroscopy in the identification of organic radicals.

OR

Explain the theory and applications of Mössbauer spectroscopy.

- 30. Explain the following nanostructures with examples
 - i) nanotubes
 - ii) nanofibers and
 - iii) nanobricks.

OR.

Explain the applications of nanomaterials in

- i) Environmental sustainability
- ii) Medical diagnosis and
- iii) Drug delivery.
- 31. Write and explain the principles of Green chemistry.

OR

Explain the role of green chemistry in

- i) Reaction time
- ii) Energy benefits and
- iii) Solvent selection.
- 32. How supramolecular chemistry is used to explain host-guest interactions and molecular recognition? Explain with examples.

OF

Explain any three microscopy techniques used for the characterization of supramolecules.
