

K21P 0539

Reg. No. :

Name:

First Semester M.Sc. Degree (C.B.S.S. – Reg./Suppl. (Including Mercy Chance)/Imp.) Examination, October 2020 (2014 Admission Onwards) PHYSICS

PHY1C01: Mathematical Physics - I

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer both questions, either (a) or (b). Each question carries 12 marks :

- 1. a) Using Gauss Jordan method, find the inverse of the matrix A = $\begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 4 \end{bmatrix}$
 - b) What do you mean by a normal matrix ? Prove that eigen vectors corresponding to different eigen values of a normal matrix are orthonormal. What about the converse of this result ?
- 2. a) State and prove Cauchy's integral formula. Also obtain an expression for the derivative of a complex function f(z) from the above formula of f(z).

OR

b) What do you mean by associated Laguerre polynomials? Obtain the generating function for the associated Laguerre polynomials. Also obtain a Rodrigues representation of the associated Laguerre polynomial. (2×12=24)

SECTION - B

Answer any four, (1 mark for Part 'a', 3 marks for Part 'b', 5 marks for Part 'c') :

- 3. a) Define curl of a vector field.
 - b) If \vec{u} and \vec{v} are irrotational vectors, prove that $\vec{u} \times \vec{v}$ is solenoidal.
 - c) Explain the physical interpretation of divergence.

P.T.O.

K21P 0539

- 4. a) Define a tensor of rank two.
 - b) Obtain the Christoffel symbol of the first kind [i, j, k] = $g_{mk}\Gamma^m_{ij}$ as derivative of the metric tensor.
 - c) Find the eigen values and eigen vector corresponding to the largest eigen

value of
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

- 5. a) What do you mean by an exact differential equation?
 - b) Compare linear and non-linear differential equations with examples.
 - c) Obtain the indicial equation of $y'' + w^2y = 0$.
- 6. a) Check whether $f(z) = z^2$ is analytic or not.
 - b) What are the different types of singularities of a complex functions? Give examples in each case.
 - c) Derive Cauchy-Riemann conditions in polar form for an analytic function.
- 7. a) Define Gamma function.
 - b) Explain double factorial notation.
 - c) Evaluate $\int_{0}^{1} (1-x^{n})^{-\frac{1}{2}} dx$ in terms of gamma function.
- 8. a) Write the Rodrigues' formula for Legendre polynomials.
 - b) Prove that $H_{2n}(0) = (-1)^n \frac{(2n)!}{n!}$
- c) Write down the Laguerre ordinary differential equation. Derive Rodrigues' formula for Laguerre polynomials. (4×9=36)