

Reg. No.	:
Name :	

III Semester M.Sc. Degree (CBCSS – OBE – Regular) Examination, October 2024 (2023 Admission) PHYSICS/PHYSICS WITH COMPUTATIONAL AND NANO SCIENCE SPECIALIZATION MSPHY03C14/MSPHN03C14: Condensed Matter Physics – I

Time: 3 Hours Max. Marks: 60

SECTION - A

Answer any 5, each one carries 3 marks.

- 1. Write a note on phonon momentum.
- 2. Explain the merits and demerits of Einstein's theory of specific heat of solids.
- 3. Briefly explain Wiedman Franz law of thermal conductivity.
- 4. Write a short note on ferromagnetism and Curie Weiss law.
- 5. What is the isotope effect in a superconductor?
- 6. Give a qualitative description of BCS theory.

 $(5 \times 3 = 15)$

SECTION - B

Answer any 3, each one carries 6 marks.

- 7. From Bragg's law in reciprocal lattice space, we know $2\vec{K} \cdot \vec{G} + \vec{G}^2 = 0$. Hence obtain $2d\sin\theta = n\lambda$.
- 8. Show that the effective mass of an electron in an energy band is $m^* = \hbar^2 / \frac{d^2E}{dk^2}$.

- 9. Assume that two semiconductors, A and B, have the same effective density of states at the conduction band edge (N_c) and the valence band edge (N_v). The intrinsic carrier concentrations of A and B at 300 K are respectively 1.5×10^{16} m⁻³ and 3.2×10^{16} m⁻³. What is the band gap of semiconductor B if semiconductor A has a band gap of 1.12 eV ?
- 10. Estimate the paramagnetic susceptibility of a substance that has 5×10^{28} atoms/cubic meter and is placed in a magnetic field of 1 Tesla at 300 K.
- 11. The critical temperature of mercury with isotopic mass 199.5 is 4.185 K. Calculate its critical temperature when its isotopic mass changes to 203.4. (3×6=18)

SECTION - C

Answer any 3, each one carries 9 marks.

- 12. Derive the dispersion relation in the case of vibration of a diatomic 1 D lattice. Draw the dispersion plot for the first Brillouin zone.
- 13. Discuss the motion of charge carriers in magnetic and electric fields and hence explain the Hall effect. Derive the relation for the Hall coefficient.
- 14. Explain the band gap in semiconductors. Obtain the relation for intrinsic carrier concentration in semiconductors.
- 15. Explain Langevin's theory of diamagnetism and obtain an expression for susceptibility.
- 16. What is the Meissner effect? Derive London equations and obtain an expression for penetration depth. (3x9=27)

SIR SYED COLLEGE

CENTRAL LIBRARY