

Reg.	No.	:											n						
Maria	_																		

III Semester M.Sc. Degree (CBSS – Reg./Suppl./Imp.) Examination, October 2020 (2014 Admission Onwards) PHYSICS

PHY3C10: Quantum Mechanics - II

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer both questions (Either a or b):

 $(2 \times 12 = 24)$

 a) What is transition probability? Obtain an expression for first order transition probability and apply it to the case of constant perturbation.

OR

- b) Describe the method of partial waves for elastic scattering.
- 2. a) Obtain the normalised solutions of the free particle Dirac equation.

OR

b) Discuss the boson quantisation of the Schrödinger field.

SECTION - B

Answer any four questions (1 mark for Part a, 3 marks for Part b and 5 marks for Part c): $(4\times9=36)$

- 3. a) Give Fermi's golden rule in time-dependent perturbation theory.
 - b) Explain electric dipole approximation.
 - c) Calculate the transition rate for the absorption of a photon of energy $\hbar w_k$ by an atom using electric dipole approximation.
- 4. a) Give the relation between scattering amplitude and differential cross section.
 - b) Discuss the validity of Born approximation.
 - c) Show that the quantum differential cross section for the scattering of two electrons at a scattering angle $\theta = \pi/2$ is half the classical value when calculated in the centre of mass frame.

K20P 1119

- 5. a) State Pauli exclusion principle.
 - b) Write down the Slater determinant for a system of N fermions.
 - c) Find all possible forms of the wave functions of a system of two identical, non-interacting spin 1/2 particles.
- 6. a) Write down the Weyl equations for the neutrino.
 - b) Discuss charge conjugation and bring out the difference between positive and negative charge parities.
 - Give a physically meaningful interpretation for the continuity equation obtained from the Klein-Gordon equation.
- 7. a) Explain what is meant by the Lagrangian density of a field.
 - b) Obtain the classical field equation in terms of the Lagrangian density.
 - c) Obtain the field equation corresponding to the Lagrangian density.

$$\mathcal{L} = \frac{1}{2} \left\{ \frac{1}{c^2} \left(\frac{\partial \phi}{\partial t} \right)^2 - (\nabla \phi)^2 \right\} + \cos \phi \,. \label{eq:lambda}$$

- 8. a) Explain how measurements play a central role in quantum mechanics.
 - b) Discuss Bohr's complementarity principle.
 - c) Describe the EPR paradox and discuss Bohr's explanation for it.