

Name :

STED COLLEGE LIBRY TO Date.

K21P 0521

Reg. No.:

First Semester M.Sc. Degree (CBSS – Reg./Suppl. (Including Mercy Chance)/Imp.) Examination, October 2020 (2014 Admission Onwards)

CHEMISTRY

CHE 1C.04: Physical Chemistry - 1

Time: 3 Hours

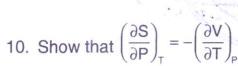
Max. Marks: 60

SECTION - A

Answer all questions in one words or sentence. Each question carries 1 mark.

(8×1=8)

- 1. Show that $\left(\frac{\partial u}{\partial v}\right)_{\tau} = \frac{a}{V^2}$ for a van der Waals gas(a van der Waals constant).
- 2. What is residual entropy? Write one example.
- Account for the high ionic mobility of H⁺ and OH⁻.
- 4. Explain Debye Falkenhagen effect.
- 5. What is Stern model of electrical double layer?
- 6. What is meant by exchange current density?
- 7. Devise an electrochemical cell in which the reaction $2H^+ + Fe \rightarrow Fe^{2+} + H_2$ takes place.
- 8. What do you mean by iR drop? Explain its significance.


SECTION - B

Answer eight questions. Answer may be in one or two sentences. Each question carries 2 marks. (8×2=16)

Define phenomenological coefficient. Show that direct coefficients are always positive.

P.T.O.

K21P 0521

- 11. Define excess thermodynamic functions. Explain the significance of excess enthalpy and excess entropy.
- 12. Calculate the thickness of ion atmosphere around K⁺ in 0.01 molal KCl at 25°C. Dielectric constant of water is 78.5.
- 13. Explain the terms:
 - a) Local equilibrium
 - b) Active transport.
- 14. Define:
 - a) Thermoelectricity
 - b) Soret effect.
- 15. What is transfer coefficient? Explain its significance.
- 16. Write Tafel equation. Explain the significance of slope and intercept of a Tafel plot.
- 17. Explain terms:
 - a) Migration current
 - b) Diffusion current.
- 18. Find the cell potential of

 $Zn \Big|_{a=0.0004}^{Zn^{2+}} \Big| \Big|_{cd}^{Cd^{2+}} \Big| cd$. The standard electrode potentials of Zn and Cd are -0.767 and -0.403 V respectively.

- 19. Explain Cathodic protection.
- 20. Write electrode reaction for corrosion in alkaline medium.

SECTION - C

Answer four questions. Each question carries three marks.

 $(4 \times 3 = 12)$

21. What are the conditions under which linear relationship exists between force and flux? What are the advantages of a linear relationship between force and flux? Explain.

- 22. Explain steady state condition for a system with two forces and two fluxes. Evaluate steady state values of both forces and fluxes.
- 23. Calculate mean ionic activity coefficient of 0.01 molal CaCl₂ in water at 25°C. A = 0.509 (Use Debye Huckel equation)
- 24. The solubility of a sparingly soluble salt MX_2 in water at 25°C is 2×10^{-5} M. Find the solubility of the salt in 0.1 molal with respect to X^- .
- 25. Derive an equation for the EMF of a concentration cell with transference.
- 26. Derive Ilkovic equation.
- 27. Draw Porbaux Diagram for Al. Discuss.
- 28. The EMF of the cell Pt | H₂ | HBr | AgBr_(s) | Ag is 0.3524 V at 25°C. Calculate the mean ionic activity coefficient of 0.01 molal HBr. The standard electrode potential of Br⁻ |AgBr_(s)|Ag is 0.2224 V.

SECTION - D

Answer either 'a' or 'b' of each question. Each question carries 6 marks. (4x6=24)

- 29. a) Using irreversible thermodynamics rationalise (i) thermal diffusion
 - (ii) thermal osmosis.

OR

- b) i) Using third law of thermodynamics, show that absolute zero of temperature is unattainable.
 - ii) What is the need for third law of thermodynamics? Discuss.
- 30. a) Derive Debye Huckel Onsager equation.

OR

- b) Discuss briefly:
 - i) Walden equation.
 - ii) Abnormal ion conductance.
- 31. a) Derive Butler Volmer equation.

OF

- b) Discuss theory and applications of polarography.
- 32. a) How would you study kinetics of corrosion? Discuss.

OF

b) Write a brief account of the different types of corrosion.