

Reg.	No.	:	 	 	••••
Nam	Δ.				

II Semester M.Sc. Degree (CBSS – Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) PHYSICS

PHY 2C08: Statistical Mechanics

Time: 3 Hours Max. Marks: 60

SECTION - A

Answer both the questions (Either a or b).

- a) Discuss the Gibbs's paradox of a classical ideal gas. How is resolved?
 - b) For a system in thermal equilibrium with the surrounding, obtain the canonical distribution. Hence prove the theorem of equipartition.
- 2. a) Considering the ideal gas as a quantum mechanical microcanonical ensemble, obtain the Maxwell Boltzmann, Fermi Dirac and Bose-Einstein statistics. Comment on the thermodynamic properties.

OR

b) Describe the Ising model of phase transition. Briefly mention how it is applicable to binary alloy. (2×12=24)

SECTION - B

Answer **any four** questions (1 mark for Part **a**, 3 marks for Part **b**, 5 marks for Part **c**).

- 3. a) Give two examples for thermodynamic state function.
 - b) Define the four thermodynamic potentials and hence explain the relationship among them.
 - c) For an ideal gas obeying the equation of state PV = nRT and molar specific heat at constant volume $C_v = \frac{3}{2} R$, find the Helmholtz free energy as a function of number of moles n, volume V and temperature T, where R is the gas constant.

P.T.O.

K23P 0505

- 4. a) Define ensemble average.
 - b) Draw the phase space diagram of a quantum harmonic oscillator.
 - c) Two classical distinguishable particles are distributed among three energy levels with energy $E_1 = 0$, $E_2 = 1$, $E_3 = 2$, such that total energy of the system is $E_T = 2$. Calculate the entropy of the system.
- 5. a) State Virial theorem.
 - b) For a system in equilibrium with a particle-energy reservoir, obtain probability function of the Grand canonical ensemble.
 - c) Show that the average energy of a three-dimensional classical harmonic oscillator in thermal equilibrium with the surroundings at temperature T is 3kT, where k is the Boltzmann's constant.
- 6. a) What do you understand by Fermi energy at non-zero temperature?
 - b) Write a brief note on Pauli para magnetism.
 - c) A certain system at temperature 3000 K has electron number density 13×10^{28} per cubic meter. Are the electrons degenerate? Explain.
- 7. a) What is phase transition?
 - b) Explain Bose-Einstein Condensate.
 - c) Using Bose-Einstein statistics, obtain the black body distribution. Hence calculate Stefan constant.
- 8. a) What do you understand by the term lattice gas?
 - b) Write a short note on Landau's phenomenological theory of phase transition.
 - c) Obtain the partition function of Ising model in one dimension. $(4\times9=36)$

CENTRAL LIBRARY