

Reg.	No.	•••		 	 	 	-	 		*			
Name	e :	 		 				 					

VI Semester B.Sc. Degree (CBCSS – Reg./Supple./Improv.) Examination, April 2020 (2014 Admission Onwards) CORE COURSE IN CHEMISTRY 6B15 CHE: Physical Chemistry – III

Time: 3 Hours Max. Marks: 40

SECTION - A

Answer all questions. Each question carries one mark.

- Define single electrode potential.
- 2. What are pseudo first order reactions?
- 3. Name a redox indicator.
- 4. What is meant by phosphorescence?

 $(1 \times 4 = 4)$

SECTION - B

Answer any seven questions. Each question carries 2 marks.

- 5. State Growtus Draper law. What is its significance?
- 6. Explain the term quantum yield.
- 7. What are parallel and consecutive reactions? Give examples.
- Differentiate between threshold energy and activation energy.
- 9. Explain the term activity and activity coefficient.
- 10. What is meant by electrochemical series? Give two uses.
- 11. Give two limitations of Lowry-Bronsted concept.

P.T.O.

K20U 0092

- 12. Why is KCI used in salt bridge?
- 13. Give the Nernst equation and explain the terms.
- 14. Explain why an aqueous solution of FeCl₃ is acidic.

 $(7 \times 2 = 14)$

SECTION - C

Answer any 4 questions. Each question carries 3 marks.

- 15. Describe the construction and reactions of calomal electrode.
- 16. What are Lasers? How are they useful?
- Derive an expression for the hydrolysis constant of a salt of weak acid and strong base.
- 18. Explain the transition state theory.
- 19. The EMF of the cell Ag/AgCl (satd) // KNO₃(satd) // 0.005M AgNO₃/Ag is found to be 0.1585v at 298 K. Calculate the solubility of AgCl and its solubility product.
- 20. Give any three application of Kohlrauschs law.

 $(3 \times 4 = 12)$

SECTION - D

Answer any 2 questions. Each question carries 5 marks.

21. a) What is meant by buffer solution?

- 1
- b) Derive Hendersons equation and mention its important applications.

4

- 22. Discuss the applications of EMF measurements.
- 23. a) Give an account of temperature dependence of reaction rates.
 - b) Explain Hinshelwood mechanism.
- 24. a) Outline the determination of solubility of by conductance measurement.
 - b) The solubility product of calcium oxalate in water at 298K is 2×10⁻⁹ mol L⁻¹.
 Calculate the solubility. (5×2=10)