

| Reg. No. | : | <br> | •••• | <br> | <br>••• |
|----------|---|------|------|------|---------|
| Name ·   |   |      |      |      |         |

III Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.)
Examination, October 2023
(2020 Admission Onwards)
PHYSICS

PHY 3C11: Solid State Physics

Time: 3 Hours Max. Marks: 60

SECTION - A

Answer **both** questions (either **a** or **b**):

 $(2\times12=24)$ 

- 1. a) Develop the wave equation of an electron in a periodic potential.
  - b) Derive an expression for intrinsic carrier concentration in semiconductors.
- 2. a) Illustrate quantum theory of paramagnetism and arrive at Curie law.
  - b) What is Meissner effect? Derive the London equation and explain its significance.

SECTION - B

Answer any four (1 mark for part a, 3 marks for part b, 5 marks for part c): (4×9=36)

- 3. a) What is first Brillouin zone?
  - b) Derive Bragg's law from the condition for diffraction in reciprocal space  $2\vec{k}\cdot\vec{G}=G^2$  (where  $\vec{k}$ -wavevector of incoming beam,  $\vec{G}$ -is the reciprocal lattice vector.)
  - c) The Bragg angle corresponding to the first order reflection from (1 1 1) planes in a crystal is 30°, when X-rays of wavelength 1.75  $\rm \mathring{A}$  are used. Calculate the interatomic spacing.





- 4. a) What is lattice heat capacity?
  - b) Write a note on Einstein's model of lattice heat capacity.
  - c) The Debye temperature of carbon (diamond) is 1850 K. Calculate the specific heat per k mol for diamond at 20 K. Also compute the highest lattice frequency involved in the Debye theory.
- 5. a) State Ohm's law and write the expression for electrical conductivity.
  - b) What is a Bloch function? Discuss its significance.
  - c) A uniform silver wire has a resistivity of  $1.54 \times 10^{-8} \ \Omega m$  at room temperature. For an electric field along the wire of 1 volt/cm, compute the mobility and average drift velocity of the electron assuming that there are  $5.8 \times 10^{28}$  conduction electrons/m<sup>3</sup>. Also calculate the relaxation time of the electron.
- 6. a) What is Hall effect?
  - b) Explain Fermi-Dirac distribution function. Plot this function for various temperature including 0 K.
  - c) Calculate the Hall coefficient of sodium based on free electron model. Sodium has bcc structure and the side of the cube is 4.28 Å.
- 7. a) What is a Type-I superconductor?
  - b) What is superconductivity? Write a short note on Dc and Ac Josephson effect.
  - c) Calculate the frequency of the AC current produced when a DC voltage of  $5\,\mu\text{V}$  is applied across the Josephson Junction.
- 8. a) What is band gap?
  - b) Write a note on the thermal ionization of donors and acceptors.
  - c) In an intrinsic semiconductor, the effective mass of the electron is 0.07  $\rm m_e$  and that of hole 0.4  $\rm m_e$ . If the energy gap is 0.7 eV, determine the intrinsic concentration of charge carriers at 300 K.