

Reg.	No.	:	 	 	 ••••
Nam	թ.				

I Semester M.Sc. Degree (C.B.C.S.S. – OBE – Regular) Examination, October 2023 (2023 Admission) PHYSICS MSPHY01C04 – Electronics

Time: 3 Hours Max. Marks: 60

SECTION - A

Answer any 5, each one carries 3 marks:

- 1. What are the characteristics of an ideal opamp? Explain perfect balance.
- 2. Define the following basic opamp parameters. Give their typical values :
 - a) Input offset voltage
 - b) Input bias current
 - c) Input offset current.
- 3. Distinguish between:
 - a) Active filter and passive filter
 - b) Low pass, High pass, Band pass and Band reject filters
 - c) Butterworth filter and Chebyshev filter.
- 4. What are opamp comparators? Explain the working of a ZCD. Why it is called so?
- 5. Explain the following in a microprocessor and give their importance :
 - a) ALE
 - b) IO/M
 - c) S₁ and S₀
- 6. What are flip-flops? Explain its use as a memory element with suitable example.

SECTION - B

Answer any 3, each one carries 6 marks:

- 7. Describe the working of a three-input scaling amplifier. Design and construct an inverting scaling amplifier with output 0.5 $V_1 + 2V_2 + V_3$. Sketch the output if $V_1 = -2V$ DC, $V_2 = 1V$ DC and $V_3 = 2 \sin{(100 \,\pi t)}$.
- 8. Determine the output voltage of an opamp for input voltages $V_1 = 1050~\mu V$, $V_2 = 950~\mu V$. Given the opamp has a differential gain $A_d = 1000$ and CMRR = 100 dB. What will be the result if the input voltages V_1 and V_2 are respectively 50 μV and 150 μV ? Comment on your answer.
- 9. Design and construct a first order low pass Butterworth filter of high cut off frequency of 3 KHz.
- 10. Design and implement an asynchronous decade counter using T flip-flops.
- 11. An 8-bit DAC has an output of 0.05 V for a digital input of 00000001. Determine :
 - i) Step size
 - ii) Full scale output
 - iii) Resolution
 - iv) Output voltage for an input of 00101100.

SECTION - C

Answer any 3, each one carries 9 marks :

- 12. Discuss the four closed loop configurations of opamp using block diagram representation. Analyse the voltage series feedback amplifier and evaluate closed loop:
 - i) Voltage gain CENTRAL LIBRARY
 - ii) Input resistance
 - iii) Output resistance and
 - iv) Bandwidth.

- 13. Describe the frequency response of a non-compensated opamp. Obtain the transfer function and analyse the high frequency equivalent of an opamp with single break frequency. How the stability of such amplifiers can be analysed?
- 14. With the relevant schematic diagrams Explain the working of :
 - i) Astable Multivibrator and
 - ii) Schmitt Trigger.

Explain the hysteresis in Schmitt trigger.

- 15. What are shift registers? Which are the general data transmission scheme in them? Explain any three among them in detail.
- 16. With the help of a block diagram discuss the internal architecture of intel 8085.

