

Reg.	No.	:	 	 	•••••
Nam	ρ.				

I Semester M.Sc. Degree (C.B.C.S.S. – OBE – Reg./Supple./Imp.) Examination, October 2024 (2023 Admission Onwards) PHYSICS/PHYSICS WITH COMPUTATIONAL AND NANO SCIENCE

SPECIALIZATION

MSPHN01C04/MSPHY01C04: Electronics

Time: 3 Hours Max. Marks: 60

SECTION - A

Answer any 5, each one carries 3 marks.

- 1. Outline block diagram representation of a typical OPAMP.
- 2. What are the differences between synchronous and asynchronous counters?
- 3. What is the potential timing problem in flip-flop circuits?
- 4. What are the different classifications of microprocessors?
- 5. Explain the oscillator principles.
- 6. Summarize the different comparator characteristics.

 $(5 \times 3 = 15)$

CENTRAL LIBRARY

SECTION - B

Answer any 3, each one carries 6 marks.

7. $\begin{array}{c} +12 \text{ V} \\ \hline \\ R_c \\ \hline \\ V_0 \\ \hline \\ Q_1 \\ \hline \\ Q_2 \\ \hline \\ \hline \\ R_E \\ \hline \\ \hline \\ \hline \\ \hline \end{array}$ $\begin{array}{c} \beta_1 = \beta_2 = 75 \\ \hline \end{array}$

In the circuit shown, if $r_i = 20 \text{ k}\Omega$, $R_C = 72 \text{ k}\Omega$ and $R_E = 48 \text{ k}\Omega$, calculate

- a) Single-ended output voltage
- b) Common mode gain.
- 8. Build a J-K flipflop by using an S-R flipflop.
- 9. Categorize different flag registers.
- 10. Design a synchronous 3-bit Up-down counter using J-K FFs.
- 11. Make use of op-amp 1458/353 to design a triangular wave generator. (3×6=18)

SECTION - C

Answer any 3, each one carries 9 marks.

- 12. Organize and explain the different functional units of the 8085 microprocessor.
- 13. Compare and contrast R-2R ladder type DAC and weighted resistor type DAC.
- 14. List and appraise different types of shift registers.
- 15. Justify how the inverting, noninverting and differential configurations of OPAMP are useful in applications like summing, scaling and averaging amplifiers.
- 16. Distinguish and explain first-order low-pass and high-pass Butterworth filters. (3×9=27)