Reg. No.: \qquad
Name : \qquad

Second Semester B.Sc. Degree (CBCSS - OBE-Regular/Supplementary/ Improvement) Examination, April 2024
 (2019 Admission Onwards) CORE COURSE IN MATHEMATICS
 2B02 MAT : Integral Calculus and Logic

Time : 3 Hours

Max. Marks : 48

Short answer type. Answer any 4 questions. Each question carries 1 mark.

1. Define hyperbolic cosine of x.
2. Write the equation of the circle of radius |a| centered at O in polar co-ordinates.
3. Find the Cartesian equivalent of the Polar equation $r \cos \theta=2$.
4. Define a statement.
5. What you mean by a contingency?

UNIT - H

Short essay type. Answer any 8 questions. Each question carries 2 marks. (8×2=16)
6. Prove that $\cosh ^{2} x-\sinh ^{2} x=1$.
7. Integrate $\log x$.
8. Find the Cartesian equivalent to the polar equation $r \cos \left(\theta-\frac{\pi}{4}\right)=\sqrt{2}$.
9. Evaluate $\mathrm{I}=\int_{0}^{1} \int_{0}^{2} x y(x-y) d x d y$.
10. Find the area bounded between the curve $y=x^{2}$ above the x-axis and below the line $\mathrm{y}=2$.
11. Define the error of approximation.
12. Write the formula using in Simpson's $1 / 3$ rule of integration.
13. Find the conjunction of the propositions p and q where p is the proposition "Today is Friday" and q is the proposition "It is raining today".
14. Let $\mathrm{a} \geq 0$ be a real number. If for every $\varepsilon>0$, we have $0 \leq a<\varepsilon$, then prove that $\mathrm{a}=0$.
15. Prove that the square of an odd integer is also an odd integer.
16. Examine that the following argument is valid $: p, p \rightarrow q \vdash q$.
UNIT - III

Essay type. Answer any 4 questions. Each question carries 4 marks.
17. Evaluate $\int \operatorname{coth} 5 x d x$.
18. Show that $\int \frac{\sin ^{4} x}{\cos ^{2} x} d x=\frac{\sin ^{3} x}{\cos x}+\frac{3}{2} \sin x \cos x-\frac{3}{2} x$.
19. Evaluate $\iint_{S}\left(x^{2}+y^{2}\right) d x d y$ over the region S in which $x \geq 0 ; y \geq 0$ and $x+y \leq 1$.
20. Find the volume of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
21. Evaluate $\int_{0}^{2} \frac{\mathrm{dx}}{\mathrm{x}^{2}+2 \mathrm{x}+10}$. Using Simpson's rule with $\mathrm{n}=2,4$. Compare with the exact solutions.

SIR SYED COLLEGE

22. Show that $\neg(p \vee q)$ and $\neg p \wedge \neg q$ are logically equivalent.
23. Show that the hypothesis "If you send me ane-mail message, then I will finish writing the program," "If you do not send me an e-mail message, then I will go to sleep early," and "If I go to sleep early, then I will wake up feeling refreshed" lead to the conclusion "If I do not finish writing the program, then I will wake up feeling refreshed."

UNIT - IV

Long essay type. Answer any 2 questions. Each question carries 6 marks.
(2×6=12)
24. If $U_{n}=\int_{0}^{\pi / 2} \theta \sin ^{n} \theta d \theta$ and $n>1$, prove that $U_{n}=\frac{1}{n^{2}}+\frac{n-1}{n} U_{n-2}$. Deduce that $U_{5}=\frac{149}{225}$.
25. Use triple integration in cylindrical coordinates to find the volume and the centroid of the solid G that is bounded above by the hemisphere $z=\sqrt{25-x^{2}-y^{2}}$, below by the $x y$-plane, and laterally by the cylinder $x^{2}+y^{2}=9$.
26. Evaluate $\int_{0}^{1} \frac{\mathrm{dx}}{3+2 \mathrm{x}}$, using trapezoidal rule with $\mathrm{n}=2$, 4. Compare with the exact solution. Find the bound on the error. Also, find the number of sub-intervals required if the error is to be less than 5×10^{-4}.
27. Prove that the following argument is valid : $p \rightarrow \tau q, r \rightarrow q, r \rightarrow p$.

