FABRICATION AND CHARACTERIZATION OF RESISTIVE SWITCHING TITANIUM DIOXIDE MEMRISTOR

A thesis submitted in partial fulfillment of the requirements for the award of degree of MASTER OF SCIENCE in PHYSICS

FATHIMA SHAMSAD C P

Reg No : C3PSPH1304 , Department of Physics, Sir Syed College, Kannur University

Under the Guidance of

Dr. ALDRIN ANTONY

Associate professor, Department of Physics, CUSAT

June 2025

Introduction to Memristors

- Non-Volatile memory device
- Neuromorphic computing
- MIM Structure

Resistive Switching

Subin, P. S., K. J. Saji, and M. K. Jayaraj. "Resistive switching in metal oxides for various applications." Nanomaterials for Sensing and Optoelectronic Applications. Elsevier, 2022. 273-299.

Objective of the Study

- Synthesize TiO₂ nanorods on FTO substrate using seed assisted hydrothermal method.
- Optimization of Hydrothermal growth conditions to suppress unwanted flower-like structures and achieve a clean nanorod morphology.
- Prevention of Silver electrode infiltration between the nanorod using PMMA.
- Fabricate memristor device.
- Characterize material and device properties.

Experimental details

Seed layer Synthesis

- FTO ultrasonicated in Ethanol and DI water
- Dip coating for 80 seconds in 0.4ml TTIP and 100 ml IPA
- Dried in hotplate for 3 minutes at 100°C
- Annealed for 1 hour at 400°C

- Stirred 25 ml HCl , 25 ml DI water and 0.6 ml TTIP for 30 minutes
- Transferred to Teflon beaker where seed layer coated FTO is placed
- Placed in an Autoclave
- Placed in Oven at 180°C

Hydrothermal Synthesis of TiO₂ nanorods

Sharon, A., Subin, P. S., Arun, G., Jayaraj, M. K., & Antony, A. (2025). Surface-modified TiO2 nanorods using oxygen plasma for optical synaptic performance and neuromorphic computing applications. Surfaces and Interfaces, 64, 106357.

Spin coating with PMMA solution

- $\circ~$ To fill the gap between the nanorods.
- PMMA solution of 3 wt% was prepared by dissolving 61.86 mg of PMMA (Alpha Aesar) in 2 ml of Anisole (Sigma-Aldrich, 99%).
- The mixture was stirred at 75°C at 1000 rpm for 1 hour and 20 minutes.
- Spin coated at 4000 rpm for 45 seconds
- Dried at 180°C for 3 minutes in hotplate
- $\circ~$ Coated in one-layer and two-layer.

Top electrode deposition by thermal evaporation

- Base pressure : ~ 7 x 10^{-6}
- Source Current : 101 A
- Silver used : ~ 180 mg
- Thickness Achieved : ~ 150 nm
- Thickness measurement done using Stylus profilometer.

Results and Discussion

Characterization of TiO₂ nanorods

(a) <u>Morphology</u>

Rapid cooled samples

Slow cooled samples

S₃* sample

S₃ sample

S₁ sample

S ₃ *	S ₂ *	S ₁ *	S ₃	S ₂	S ₁	S _{1/2}
3 hours	2 hours	1 hour	3 hours	2 hours	1 hour	1/2 hour
Rapid cooled	Rapid cooled	Rapid cooled	Slow cooled	Slow cooled	Slow cooled	Slow cooled

Subha, P. P., Hasna, K., & Jayaraj, M. K. (2017). Surface modification of TiO2 nanorod arrays by Ag nanoparticles and its enhanced room temperature ethanol sensing properties. Materials Research Express, 4(10), 105037.

Characterization of PMMA coated TiO₂ nanorods

(a) Morphological and Elemental Analysis

PMMA Coated in one layer

Element	Atomic %	Weight % 👻
Titanium	26.71%	53.56%
Oxygen	57.18%	38.33%
Carbon	16.11%	8.11%

PMMA Coated in two layer

Element	Atomic %	Weight % 👻
Carbon	57.75%	50.64%
Oxygen	42.25%	49.36%

(b) <u>XRD</u>

80

Intensity (arb. unit) ⁶⁰
⁶⁰

0 -

10

20

30

80

70

90

Angle (2θ)

(c) Raman Spectroscopy

- Broad humps Noncrystalline nature
- Reduction in Raman peak intensity – Increased thickness of PMMA layer
- TiO2 (rutile) 3.0 eV
 1L PMMA_TiO2 3.1 eV
 2L PMMA_TiO2 3.2 eV
- Band gap widening Increased thickness of PMMA layer

(b) <u>UV-Vis Spectroscopy</u>

Electrical Characterization

I-V Characteristics

- Forming Voltage : 2.45 V
- \circ V_{set} : 0.4 V
- \circ V_{reset} : -0.9 V
- Endurance : 105 cycles

ON-OFF Ratio

$$\circ R_{OFF} = 1.432 \text{ K}\Omega$$

$$\circ R_{ON} = 632.9 \Omega$$

$$\circ \text{ ON/OFF Ratio } = R_{OFF}/R_{ON}$$

$$= 1.432 \text{ K} \Omega / 632.9 \Omega$$

$$= 2.232$$

Conduction Mechanism

Retention

Conclusion

- TiO₂-based memristor successfully fabricated using hydrothermal method.
- PMMA layer used to prevent Ag infiltration between nanorods.
- XRD and Raman spectroscopy confirmed rutile phase; FESEM showed nanorod morphology.
- UV-Visible was used spectroscopy to find band gap.
- Device showed clear bipolar resistive switching (SET ~0.4 V, RESET ~ -0.9 V).
- The device shows an endurance of 105 cycles, a retention time of 2000s and an ON/OFF ratio of 2.232.

Future work

Explore the memristor's potential for neuromorphic computing:

• Mimicking synaptic functions like potentiation and depression.

 Investigate photoresponse under UV illumination:

• Analyze I–V characteristics under varying light intensities.

• Evaluate response time, photocurrent generation, and stability.

Presented by Fathima Shamsad C P